
Hors d’oeuvres for exascale programming

Jeff Hammond (e@anl.gov)

Argonne Leadership Computing Facility and
University of Chicago Computation Institute

19 October 2012

Jeff Hammond Computing Futures



Exascale Programming Challenges

Concurrency (Parallelism)

Resilience

Hardware diversity

Programming Models

I put “hors d’oeuvres” in the title for a reason; this
talk is not meant to be completely satisfying.

Jeff Hammond Computing Futures



Concurrency vs. Parallelism

From Sun’s Multithreaded Programming Guide:

Parallelism A condition that arises when at least two threads are
executing simultaneously.

Concurrency A condition that exists when at least two threads are
making progress. A more generalized form of parallelism that can
include time-slicing as a form of virtual parallelism.

Exascale systems will likely demand billion-way concurrency, but
not necessarily because they have billion-way parallelism.
Processing is not going to be the bottleneck, so the
aforementioned virtual parallelism may be manifested in the form
of simultaneous multithreading (e.g. Blue Gene/Q) and related
methods to hide latency. Many threads share execution resources.

Jeff Hammond Computing Futures



Hardware examples

Threads or cores share functional units, so concurrency exceeds
parallelism. POWER7, SPARC, Intel Atom all have SMT.

BG/Q has 4 threads sharing ALU+FPU.

See also: NVIDIA memory controller keeps many loads and stores
in-flight at once to hide latency; Cray XMT similar concept.

Jeff Hammond Computing Futures



Programming for Concurrency

Traditional languages do not express concurrency effectively:

FORTRAN 77 relies on compiler but can be autoparallelized.

C89 and C99 have no memory model; hard to autoparallelize.

C++98 and C++03 have the same issues as C.

Fortran 95 FORALL is a very restrictive form of concurrency.

There is progress:

CUDA is fantastic but obviously not portable. OpenCL?

OpenMP and OpenACC compensate for serial languages.

Intel has lots of non-portable bells and whistles.

Chapel might give us something but will you use it?

Jeff Hammond Computing Futures



Concurrent Algorithms

Life is good if you’re a quantum chemist:

Rab
ij =

∑
cd

T cd
ij V ab

cd

translates nicely into

forall i,j,a,b:

forall c,d:

R(i,j,a,b) += T(i,j,c,d) * V(a,b,c,d)

Not everyone can express their computation in forall loops.

Jeff Hammond Computing Futures



Domain-Independent Languages

Compilers suck because:

The commodity market is still serial: one app per core.

Linux, Windows, Office, browsers mostly serial.

Fine-grain parallelism ignored (except GPU).

All compiled languages are serial (except CUDA).

90:10 rule and low-cost performance monkeys (e.g. games)

HPC is SPMD, desktop is MPMD. If smartphone/tablet are
SPMD, that may save us.

Prediction: you’ll see a commodity compiler autoparallelize when it
extends iPhone battery life by >20%.

Jeff Hammond Computing Futures



Domain-Specific Languages

Take away control from the compiler:

Specialization allows compiler theory to be practical.

Restricted semantics required for good autoparallelization.

Most scientific codes focus on <10 motifs (dwarfs).

Examples:

Tensor Contraction Engine (TCE): parallelize quantum
many-body theory.

Liszt (Stanford): mesh-based PDEs on multicore and GPUs.

FENICs/FIAT/Dolfin: FEM PDEs.

Emphasis still on productivity, not performance. SPIRAL is one
exception.

Jeff Hammond Computing Futures



Multi-scale (aka Good) Programming

DSL not need if 90:10 rule applies.

Humans still smarter than compilers.

Can always autotune if parameter space reasonable,
well-defined.

Nonorthogonal hardware makes code factorization harder.

Transition from terascale to petascale relied upon scaling MPI of
within node or orthogonality of intra- and internode.

Difference between cluster, Cray and Blue Gene is less than 10x in
any direction.

Hardware is starting to be >2-dimensional. . .

Jeff Hammond Computing Futures



Resilience and Fault-Tolerance

From Wikipedia:

Resilience is the ability to provide and maintain an acceptable level
of service in the face of faults and challenges to normal operation.

Survivability is the ability to remain alive or continue to exist (but
potentially at an unacceptable level of service).

Fault-tolerance or graceful degradation is the property that
enables a system to continue operating properly in the event of the
failure of (or one or more faults within) some of its components.

Jeff Hammond Computing Futures



Application Perspective

Resilience: your application will run fine even when faults are
occurring (like the Internet).

Survivability: your application may run poorly when faults are
occurring (like my car).

Fault-tolerance: your application will not abort when something
fails (like a node), but it might run poorly (because e.g. MPI
collectives can’t be used).

How many applications running on supercomputers have any of
these properties?

Jeff Hammond Computing Futures



MPI isn’t the problem. . .

. . . but MPI ERRORS ARE FATAL is.

However, if MPI ERRORS RETURN, this MPI-3.0 function is
collective only on the group, not the comm:
MPI COMM CREATE GROUP(comm, group, tag, newcomm)

If rank i is dead and you know it, you can make
MPI COMM NEW WORLD and proceed.

It’s fun to pick on MPI, but other than TCP/IP, can you name a
fault-tolerance communication model? UPC, CAF, OpenMP,
Chapel, etc. have no discernible plan for fault-tolerance.

Jeff Hammond Computing Futures



Faults aren’t even the problem

[T]here are known knowns; there are
things we know that we know. There
are known unknowns; that is to say
there are things that, we now know we
don’t know. But there are also unknown
unknowns – there are things we do not
know we don’t know.

- Don Rumsfeld

Everyone is scared of hard errors, but soft and silent errors are far
more common and a much bigger problem.

Jeff Hammond Computing Futures



Soft and silent errors

Let’s imagine that:

the FPU computes the wrong answer once every 1012

instructions.

Uncorrectable, undetected memory errors (beyond ECC).

Registers and caches cannot be considered absolutely reliable.

Near-threshold voltage and many other factors will increase this
rates substantially from today. O(1015) of everything magnifies
even femtoscopic error rates.

We can probably count on the vendors to take care of ALU,
instruction cache and program counter, but nothing involving FP is
mission-critical to OS, Internet, Crypto, banking, etc.

Jeff Hammond Computing Futures



Need for resilience priorities

As part of Andrew Chien’s Global View Resilience (GVR) X-Stack,
we developed the following motifs for resilience in applications
(inspired heavily by quantum chemistry).

Application Code Expert GVR Team
Corrupted Data Property Response Priority
Available local Reread Low
Available nonlocal Reread Low
Available external Reread Low

Recomputable w/ local data Recompute Low
Recomputable w/ nonlocal Recompute Medium

Not Recomputable, Approximable Approximate High
Not Recomputable Restart Very High

Jeff Hammond Computing Futures



Need for mathematics of errors

Upper bounds on solutions are incredibly powerful:

If f (x) ≤ g(x) < ε and g much less expensive to compute
than f , this is not only a recipe for a fast algorithm but also
efficient error detection.

Look for impossible solution data and fix it. Negligible errors
are negligible, i.e. don’t fix what’s in the noise.

Conventional RAS is overkill if you don’t need everything to
be reliable. Who cares if low-order bits flip?

Know where your error goes:

Parabolic PDEs (e.g. diffusion eqn.) smooth away errors.

Hyperbolic PDEs (e.g. wave eqn.) propagate errors until they
leave domain.

Jeff Hammond Computing Futures



Hardware diversity

Two swim-lanes:

1) ABLE
Blue Gene/Q + 5 years

2) SPEC
Cray XK + 5 years

And then Mark Seager, Al Gara, Bob Wisnewski went to Intel
and Steve Scott went to NVIDIA while Intel bought Qlogic
and Cray’s network IP . . .

Jeff Hammond Computing Futures



NVIDIA Echelon

From GPU maker to integrator?

Jeff Hammond Computing Futures



Hybrid Memory Cube

Jeff Hammond Computing Futures



Thinking about the future

The machine won’t be 2D (nodes×cores=MPI×Threads).

GPUs rapidly moving back to the die but that doesn’t meant
the offload model is bad (PIM).

Logic in/at memory is new and different because we need to
think about locality more :-)

Logic in the memory might be rather “stupid”.

Massive increase in bandwidth won’t hide latency.

How does OS affect memory? Why do we need pages
anymore? Do cache lines make sense?

Your guess isn’t as good as mine (thanks to NDAs) but I’m still
not clear what the right solution is.

Jeff Hammond Computing Futures



Programming Models

MPI is not a programming model except when it is.

Global Arrays (via ARMCI-MPI), Charm++,
UPC/CAF/Chapel (via GASNet), X10 all sit on top of MPI.
Performance may vary.

Well-designed numerical libraries such as PETSc, Elemental
and PLAPACK have an intrinsic PGAS nature: user pushes
data into opaque object store, albeit not with one-sided (yet).

Research into compiler transformations on MPI codes, esp.
turning two-sided into one-sided.

MPI over OS threads or even user-level threads (e.g.
Charm++ AMPI) instead of processes can be much more
dynamic.

MPI-2 dynamic processes are a dynamic model :-)

Jeff Hammond Computing Futures



The MPI-PGAS Wars

All quotes are highly approximate but true in spirit to the best of
my ability.

“We’ve seen from all the NAS Parallel Benchmark studies
that people who tune them for UPC go through all same steps
as were done for MPI.” – Someone at PGAS12.

“MPI and UPC are both SPMD, which is a good thing relative
to dynamic execution models.” – Kathy Yelick at ICERM.

“If you want to write fast UPC code, you do explicit
communication using ups mem{put,get}” – Lots of people.

“MPI has performance transparency.” – Rusty Lusk at SC11.

Until there is a PGAS compiler that can optimize data motion,
PGAS is going to be just as productive as MPI, which is neither
good nor bad. There are no free lunches.

Jeff Hammond Computing Futures



Programming Models and Abstraction

Good programming models raise the level of abstraction:

Global Arrays is a domain-specific library for dense linear
algebra that happens to use one-sided.

PETSc is a domain-specific library for sparse linear algebra
and solvers that happens to use scatter a lot.

A central concept of Charm++ is over-decomposition and
iterative load-balancing. That it has active-messages isn’t
what makes it wildly successful for some applications.

UPC is nice in that if performance doesn’t matter, you don’t
have to work as hard at communication because it is implicit.

Every application team needs to decide what is hard about
organizing and moving data, then try to find a useful abstraction
for this. Why not make it runtime agnostic?

Jeff Hammond Computing Futures



Conclusions

Physics, math, algorithms, software design and performance
tuning are all hard.

Keep people focused on what they’re good at. Don’t let the
physicists spend all their time on MPI trivia, etc.

Thanks for your attention.
Dinner will be served in 5-10 years :-)

Jeff Hammond Computing Futures


